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Abstract Genome-wide association study (GWAS) has

become an obvious general approach for studying traits of

agricultural importance in higher plants, especially crops.

Here, we present a GWAS of 32 morphologic and 10

agronomic traits in a collection of 615 barley cultivars

genotyped by genome-wide polymorphisms from a

recently developed barley oligonucleotide pool assay.

Strong population structure effect related to mixed sam-

pling based on seasonal growth habit and ear row number

is present in this barley collection. Comparison of seven

statistical approaches in a genome-wide scan for significant

associations with or without correction for confounding by

population structure, revealed that in reducing false posi-

tive rates while maintaining statistical power, a mixed

linear model solution outperforms genomic control, struc-

tured association, stepwise regression control and principal

components adjustment. The present study reports signifi-

cant associations for sixteen morphologic and nine agro-

nomic traits and demonstrates the power and feasibility of

applying GWAS to explore complex traits in highly

structured plant samples.

Introduction

With the growing availability of genome sequence data and

advances in technology for rapid identification and scoring

of genetic markers, linkage disequilibrium (LD) based

genome-wide association study (GWAS) has gained favour

in higher plants, especially crops, for the mapping of

genetic factors responsible for complex trait variation

(Remington et al. 2001; Gupta et al. 2005; Mackay and

Powell 2007; Cockram et al. 2008; Sneller et al. 2009;

Atwell et al. 2010). While conventional linkage analysis

works on an experimental population derived from a cross

of bi-parents divergent for a trait of interest, association

mapping applies to collections of samples of a much wider

germplasm base. Providing the intrinsic nature of exploit-

ing historical recombination events, association mapping

offers increased mapping resolution to polymorphisms at

sequence level and should therefore enhance the efficiency

of gene discovery and facilitate marker assisted selection

(MAS) in plant breeding (Gupta et al. 2005; Moose and

Mumm 2008). Plants offer an ease of genetic manipulation

allowing production of genetically uniform cultivars

through inbreeding, making it possible to conduct repli-

cated assays for many different traits under multiple

environmental conditions. Once the plant cultivars are

genotyped with high-density markers, association mapping
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is promising in resolving the genetic basis of complex traits

of both economic and ecological importance.

In the present study, we applied GWAS to analyse a

number of continuous and categorical traits in a collection

of 615 elite UK barley cultivar samples, some of which

were recently reported in an association mapping study

(Cockram et al. 2010). Barley (Hordeum vulgare L.), the

world’s fourth most important cereal crop, is an econom-

ically important model plant for genetics research (Hayes

et al. 2003; Taketa et al. 2008). Due to its narrow genetic

base of breeding and also the population bottleneck during

the domestication of modern barley cultivars, it was

reported that barley exhibited an extensive extent of LD

(Kraakman et al. 2004; Rostoks et al. 2006; Malysheva-

Otto et al. 2006). Barley cultivars thus potentially provide

extant genetic resources that allow successful association

mapping using a relatively small density of markers,

although the resolution could be limited. Plant species such

as barley present exclusive features that could cause

striking difference from human GWAS. For example,

barley is a diploid and hermaphroditic species in which

self-pollination and homozygosity are normal, thus

observed heterozygosity is limited in barley cultivars

(Rostoks et al. 2006). Moreover, due to the nature of

inbreeding and isolation by distance, barley samples may

present a much larger scale of population structure and

relatedness, introducing the potential for serious con-

founding in the association study (Balding 2006; Atwell

et al. 2010; Hamblin et al. 2010; Platt et al. 2010). In

addition, human intervention plays an essential role in

modern barley cultivation, hence strong selection on

agronomic/economically important traits is expected

(Rostoks et al. 2006). Furthermore, the whole genome

sequences of many plant species including barley are cur-

rently unavailable, hindering any attempt to fine map

genetic determinants to sequence level. Given the various

complicating factors exhibited in plant samples, it raises

concerns about the general applicability of many standard

population genetics models well established for human

GWAS to plants such as barley.

It is recognized that the barley germplasms are highly

partitioned, predominantly due to the number of ear rows

(two-row and six-row samples), and the requirement of

vernalization (winter- and spring-sown samples) (von

Zitzewitz et al. 2005; Yan et al. 2006; Rostoks et al. 2006;

Komatsuda et al. 2007; Hamblin et al. 2010). The present

barley samples comprise several combinations of these

characters. As the molecular bases of ear row number and

vernalization requirement in barley have been relatively well

characterised (Cockram et al. 2008; Komatsuda et al. 2007),

these barley samples present an ideal test bed to evaluate the

applicability of various statistical methods established for

association mapping in highly structured samples. In this

paper, we first investigated the LD structure and its rela-

tionship with the barley population division. Methodologi-

cally, we tested the performances of one parametric model

(STRUCTURE) and one dimensional reduction technique

(principal component analysis, PCA) in the inference of

population structure of the barley samples. Second, we

undertook a genome-wide scan for significant markers

associated with a number of traits using six major population

structure correction methods (reviewed extensively in Astle

and Balding 2009). A comparison of empirical P value dis-

tribution and a simulation study of statistical power were

conducted to evaluate the performances of different meth-

ods. Finally, association mapping results from the best

structure correction method were reported.

Materials

Germplasm and genotyping

The present study recruits the barley cultivars that have

undergone at least 2 years of the UK National List (NL)

trials since 1993, together with additional confidential elite

lines supplied by major UK barley breeding companies. In

total, there are 615 UK barley cultivars (they are also

referred as to samples in followings) collected in the

present study, among which 490 cultivars were reported in

a GWAS of barley morphological traits in Cockram et al.

(2010) (ESM, Table S1). Among this collection, 461

samples have records for ear row number, in which 433 are

two-row barley and 28 are six-row barley. 472 samples are

known for seasonal growth habit, in which 256 are winter

barley and 216 are spring barley. The 433 two-row barley

samples are almost equally partitioned into winter (220)

and spring (209) groups, while 4 are unknown for seasonal

growth habit. Of the 28 six-row barley samples, 27 are

winter barleys and 1 is unknown for seasonal growth habit.

The barley samples were genotyped at 1,536 single

nucleotide polymorphism (SNP) markers by using a

recently developed genotyping platform, the Illumina

GoldenGate oligonucleotide pool assay 1 (BOPA1).

Details were described elsewhere for development of the

markers as well as construction of the genetic consensus

linkage map based on genotypes of BOPA1 and its sister

production assay (BOPA2) (Close et al. 2009). Markers

genotyped in less than 95% of the samples, with a minor

allele frequency (MAF) below 0.1 or unmapped in the

barley consensus genetic map were excluded from further

analysis. Heterozygous genotypes were rare (0.8%) in the

present data as expected from extensive inbreeding and

backcrossing in cultivation and were removed to simplify

the subsequent analysis. After quality control checking,

1,042 markers remained for further analysis.
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Phenotype

Phenotypic data was recorded on 32 highly heritable mor-

phological characters as well as on 10 agronomic characters

including yield and malting traits (ESM, Table S2a, b). The

32 morphological characters, including seasonal growth

habit and ear row number, were scored as binary or cate-

gorical characters according to the guidelines of Interna-

tional Union for the Protection of New Varieties of Plants

(UPOV) protocols (http://www.upov.int/) (Cockram et al.

2010). These morphological phenotype data were loaded at

NIAB (http://www.niab.com/) and named Distinctness,

Uniformity and Stability (DUS) traits hereafter. For each of

the agronomic characters, the phenotype data were collected

from a series of performance assessment trials involving at

least four site by season combinations, and thus the data so

collected represent agronomic performance of the cultivars

in a wide range of environments. A mixed linear model was

first fitted to account for the time, trial and regional effects

together with their interactions and the predicted mean val-

ues after removing the fixed effects were taken as the final

agronomic trait measure for each barley sample. For con-

venience, we called the summarized agronomic measure-

ments as BLUP traits which were sourced as the archived

database at the Association Genetics of UK Elite Barley

(AGOUEB, http://www.agoueb.org). In this primitive

BLUP analysis of the agronomic traits, considerable year and

site differences as well as their interactions were observed

for most of the agronomic traits while the differences

between trials were rarely significant and generally negli-

gible. With regard to the difference between the genotypes,

heritabilities were generally high with an average of 36% for

spring and 45% for winter barley (data not shown). It should

be noted that, the present barley collection has 125 extra

samples compared to those used in Cockram et al. (2010).

Although none of these extra samples has phenotypic records

for the DUS or BLUP traits, they had been genotyped with

the BOPA1 platform and hence were recruited in the present

study for the purpose to investigate the population structure

in a larger collection of UK barley germplasm.

Methods

Unless otherwise stated, all analyses were carried out using

R, a statistical software package freely available at http://

www.r-project.org.

Inference of population structure

Program STRUCTURE v2.2.3 (http://pritch.bsd.uchicago.

edu/structure.html) was first applied to estimate the number

of historical populations in the present barley samples

using default setting of admixture model for the ancestry of

individuals and correlated allele frequencies. Population

sub-structure was modelled with a burnin of 2.5 9 105

cycles followed by 106 Markov Chain Monte Carlo

(MCMC) repeats for prior assumed ancestral population

number, K = 1,…, 20. Since STRUCTURE analysis is

computationally intensive, we did not load in all 1,042

markers but instead used 4 subsets of markers. The first

marker set contained seven markers, each of which was

selected from the middle of a chromosome while the

remaining three sets consisted of 305, 96 and 54 markers

selected every 2, 10 or 20 cM, respectively, along the

barley chromosomes.

Principal component analysis (PCA) was also used as in

Price et al. (2006) to infer the population structure in the

barley samples. Let g be a matrix of genotypes with ele-

ment gij being the genotype of variety i at marker j, where

i = 1 to N (the number of samples) and j = 1 to M (the

number of markers). Re-scale matrix g by subtracting the

column mean and then dividing by the column standard

deviation for each entry in column j, to give a matrix

denoted by X. An N � N sample covariance matrix was

computed from X and then decomposed into eigenvalues

and eigenvectors V. In Price et al. (2006), the kth top

eigenvector in V was regarded as the kth axis of variation

due to ancestry difference.

Association scan

A naive single marker association (SMA) test without

correction for confounding was first carried out to search

for associations between trait phenotype and marker

genotype. SMA refers to linear regression for continuous

quantitative traits, Wilcoxon rank-sum test for ordinal

categorical traits and chi-square test for other categorical

traits. Six statistical methods widely used for controlling

population structure were applied to analyze the data.

These are structured association (SA) (Pritchard et al.

2000b), genomic control (GC) (Devlin and Roeder 1999),

EIGENSTRAT (Price et al. 2006), stepwise regression

(SWR) (Setakis et al. 2006), and the mixed linear model

(MLM) methods with or without incorporating an inferred

population structure matrix as cofactor (Yu et al. 2006).

Except for Wilcoxon rank-sum test and chi-square test,

the other methods can be formulated within standard

regression models that express the expected value of yi, the

phenotype of the ith sample, as a function of its genotype xi

at the test marker:

gðE½yi�Þ ¼ aþ xib ð1Þ

where g is a link function, a is model intercept, and b is

genetic effect parameter at the marker. Here, xi is simply

coded as 0 and 1 for two different homozygous genotypes
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at a test marker. For categorical traits, g is a logit link

function, while for quantitative traits, g is an identity link

function.

The GC approach was originally developed to correct

inflation in a chi-square statistic estimated by Armitage’s

trend test in structured case-control samples. Bacanu et al.

(2002) demonstrated the GC can also be applied to the

analysis of quantitative traits by taking ½b̂=SEðb̂Þ�2 (where

b̂ is the estimate of regression coefficient b and SE is the

standard error) as a chi-square test statistic and hence the

inflation factor k can be estimated from a number of ‘null’

markers using similar methodology to the case–control

settings (Devlin and Roeder 1999). As we do not know

a priori which markers are ‘null’, parameter k was esti-

mated in the present study as the median of genome-wide

chi-square scores divided by 0.455, the median of the

empirical chi-square distribution under null hypothesis as

suggested in Devlin and Roeder (1999). Whenever k is

larger than 1, the chi-square statistic at each test marker is

divided by k.

In the standard SA approach, association test is condi-

tional on the assignment of a population structure inferred

by STRUCTURE (the Q matrix). In the present study, a

reliable inference of Q matrix was not achievable (see

‘‘Results’’); instead, a design matrix indicating the cluster

membership derived from k-means clustering of top three

PCA axes (termed P matrix for simplicity) was incorpo-

rated into Eq. 1 with a form of

gðE½yi�Þ ¼ aþ xibþ Piv ð2Þ

where Pi is the ith row of the P matrix and v is a column

vector of regression coefficients. The best cluster model of

the k-means clustering was determined through a model

selection based on Bayesian information criterion (BIC)

which is detailed in ‘‘Results’’.

The EIGENSTRAT method adjusts the genotype and

phenotype by using eigenvectors V estimated from the

PCA method as described. In detail, let gij be the genotype

of individual i at marker j, the adjusted genotype is

gij;adj ¼ gij � cjai, where ai is the ancestry of the ith indi-

vidual along a given axis of variation and cj ¼P
i aigij=

P
i a2

i is a regression coefficient (Price et al.

2006). Adjustments are performed using the top ten axes of

variation following Price et al. (2006). Phenotype yi is

adjusted analogously. A linear regression is then carried

out to test the association between adjusted phenotype and

genotype.

The SWR approach uses a stepwise regression proce-

dure to select for a ‘random’ set of markers as covariates to

control for population structure. By including into the

regression model the genotype of covariate markers, the

linear equation becomes

gðE½yi�Þ ¼ aþ xibþ
X

j
Cijuj ð3Þ

where Cij is the genotype of the ith individual at the jth

covariate marker and uj is the partial regression coefficient.

Covariate markers are selected prior to testing a marker of

interest by using a forward and backward (stepwise)

selection from a random set of 305 markers chosen every

2 cM along the chromosomes. In this study, the stepwise

algorithm for selecting covariate markers was implemented

by an R function step, using a penalty score log(n), where n

is the number of markers. It should be stressed that step-

wise regression is computationally intensive in R and it

may even become impractically doable when all markers

are incorporated in the model fitting. Moreover, because

barley exhibit extensive extent of LD along the chromo-

somes, it is not necessary to include all markers as adjacent

markers tend to provide redundant information regarding

the population structure.

The MLM model extends equation (2) by including a

random polygenic effect term such that the model is

expressed as

E½yijdi� ¼ aþ xibþ Pivþ di ð4Þ

where di is interpreted as a polygenic contribution to the

phenotype (Yu et al. 2006; Astle and Balding 2009) and

assumed to have a distribution of d�Nð0; 2Kr2
gÞ, where

K is a kinship matrix and r2
g is the genetic variance

attributable to genome-wide effects. In this study, K is

estimated as a pairwise identical-by-state (IBS) allele-

sharing matrix (Kang et al. 2008). As both population

structure and kinship were incorporated, we called this full

model the MLM (P ? K) model. Meanwhile, we tested a

K only model, called MLM (K), which omits the popula-

tion structure P from the full model. Both MLM (P ? K)

and MLM (K), together with the calculation of IBS allele-

sharing matrix, have been implemented in R package

EMMA (Kang et al. 2008).

Simulation study

A candidate quantitative trait nucleotide (QTN) simulation

similar to that of Yu et al. (2006) was conducted. The

simulation starts by randomly choosing from the 1,042

markers, a marker with minor allele frequency in the range

of 0.1–0.4 as a causal marker. Next, a constant genetic

effect explaining a proportion of phenotype variance is

added to this causal marker. Later, the phenotype value for

an individual is generated by summation of population

mean, its genotypic value at the causal marker and a ran-

dom number. Given the size of genetic effect, a, the per-

centage of phenotypic variation explained by the causal

marker in a pure homozygote type population is calculated
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by pð1� pÞa2=r2, where p is the allele frequency and r2 is

the total phenotype variance (Falconer and Mackay 1996).

For a categorical trait with n categories, we considered a

liability model that a set of thresholds hj(s) determines the

explicit categories from the (underlying) quantitative phe-

notype values. The ith sample falls in trait category j if its

simulated quantitative trait value Ti satisfying the condition

of hj-1\Ti B hj (j = 1, …, n), in which hn = -h0 = ?. In

the present simulation study, thresholds hj(s) are deter-

mined in a way that maintains the same categorical dis-

tributions (i.e. keeping the same proportion of samples in

each category) as that of the observed traits.

Results

Statistical prediction of population structure

The genome-wide LD structure in the 615 barley samples

was inferred with software Haploview (see Supplementary

Material Fig. S2a–c for the genome-wide r2 pattern). High

LD values were observed across a wide range of the gen-

ome with 88.6% significant pairwise marker associations

(Bonferroni corrected P value threshold 9.2 9 10-8) being

inter-chromosomal, suggesting strong population structure

effect in the barley samples. Furthermore, significant intra-

chromosomal LD was evident across the full length of

chromosomes (mean = 57.4 cM). When isolating winter

samples and spring samples from the whole barley col-

lection, we found that 52.6% of the markers had allele

frequencies differing more than twofold between winter

and spring subpopulations. Analysis of the LD structure in

the two separate seasonal growth type samples revealed

that the proportion of significant inter-chromosome mar-

ker-pair associations reduced to 18.9% in winter samples

and 10.8% in spring samples while the mean span of sig-

nificant intra-chromosomal LD was 8.5 and 5.2 cM

accordingly. This result suggests the presence of significant

population structure in the 615 barley samples is primarily

due to the divergence in winter and spring growth habit.

The absence of seasonal growth habit information for

some barley samples necessitated a more detailed investi-

gation of the population structure in the whole barley

collection, for which we employed two statistical approa-

ches making use of marker genotype data. The first

approach was using the program STRUCTURE, a para-

metric method developed by Pritchard et al. (2000a), which

uses a Bayesian Markov Chain Monte Carlo (MCMC)

approach to infer the number of ancestral subpopulations,

K, and then to assign samples probabilistically to each of

the K subpopulations. Under the same program parameter

setting we carried out STRUCTURE analyses using four

sets of markers selected according to the criteria described

above. Figure 1a shows the estimated log probabilities of

the sample data on subpopulation number K from 1 to 20.

As illustrated, none of the four marker sets was able to

achieve a convergence for the estimation of parameter K,

implying failure to obtain a reliable inference of population

structure. It is also observed from Fig. 1a an upward trend

in the estimated log probabilities of the data as parameter

K increases when using genotypes of 305 markers which

were chosen every 2 cM along barley chromosomes.

However, this trend is not evident when genotypes of fewer

markers were used, suggesting disagreement in STRUC-

TURE inferences drawn from different marker genotypes.

The second approach used PCA analysis to search for

the internal patterns of population structure in the barley

samples. Figure 1b and c presents the top three principal

components (PCs) decomposed from the covariance

matrix. The first three PCs explained, respectively, 20.1,

5.2 and 3.1% of the total variance among the barley col-

lections. The majority of winter samples and spring sam-

ples were clearly separated from each other by the first PC,

except for five winter samples which were clustered with

spring samples. An isolated cluster was also evident con-

sisting of more than 30 samples unknown for both ear row

number and seasonal growth habit (Fig. 1b). Of the 27 six-

row and also winter samples, 22 tend to aggregate to a

separate cluster together with 1 two-row sample and some

samples with unknown ear row number (Fig. 1b). The third

PC reveals dispersions within either winter or spring

samples, e.g. a group of 57 winter barleys are apparently

separated from the majority within the winter barley cluster

(Fig. 1c). These observations confirm the winter and spring

growth habit as the major source that gives rise to the

population structure in the barley samples, and additionally

suggest the existence of subdivisions in either winter or

spring barley samples. The results also manifest the sepa-

ration between two-row and six-row types. However,

clustering with the top three features extracted from PCA

by using an x-means cluster algorithm (Pelleg and Moore

2000), which extends the commonly used k-means cluster

with efficient estimation of the optimized number of clus-

ters based on Bayesian information criterion (BIC), shows

that the best cluster model has a cluster number k = 2

(BIC = -160.1). The resulting cluster membership with

k = 2 was written in a matrix form and taken as the

P matrix in the following association analyses.

Confounding due to population structure

Since variation of winter and spring growth habit contrib-

utes the major source of barley population structure, we

were interested in whether the traits were distributed dif-

ferentially between winter and spring barley samples.
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Supplementary Material (ESM, Fig. S2a, b) presents the

distributions of BLUP and DUS traits in the two seasonal

growth habit samples. All BLUP and a number of DUS

traits clearly presented differential distribution between

winter and spring barley samples (those significantly

associated with seasonal growth habit are indicated in

Table S2). This observation raises a concern that any

marker that differs in allele frequency between seasonal

growth types will show association with these differentially

distributed traits. Because more than half of the markers

had allele frequencies differing more than twofold between

winter and spring barley samples, an association test

without accounting for the population structure will result

in an increased rate of systematic false positives (Balding

2006).

A single marker association (SMA) test was first carried

out to scan for markers in significant association with trait

variation in the winter and spring barley samples sepa-

rately. As shown in Supplementary Material (ESM, Table

S3), a greater number of significant markers were predicted

in winter barley varieties than in spring barley varieties. By

visualizing the P value distribution in a quantile–quantile

plot (Wilk and Gnanadesikan 1968), we found that all

BLUP and a majority of DUS traits gave rise to a distri-

bution of P values strongly skewed towards significance

(GC k[ 1.0) (ESM, Fig. S4a, b), though we also observed

distributions of P values that showed skewness against

significance in four DUS traits (numbers 1, 7, 18 and 31).

Because population structure may lead to excess of both

false positive and false negative associations (Ziv and

Burchard 2003), the present observation of skewed P value

distributions suggests that the expected confounding indeed

exists in winter and spring samples.

By analyzing all 615 barley samples, a large number of

genome-wide distributed markers were detected to be sig-

nificant from the naive SMA approach in all of the BLUP

and in about half of the 32 DUS traits (ESM, Table S3). For

example, with DUS trait number 28 (seasonal growth

habit), there were 793 significant markers (more than 76%

of the total markers). Quantile–quantile plot of the P value

Fig. 1 a Estimated log

probability, Ln(p), of the data

on different population number

K from STRUCTURE analyses.

Curves from top to bottom are

for analyses using genotypes

from markers selected by

picking one marker on every

chromosome, or markers at

intervals of 20 cM, 10 cM, and

2 cM, respectively. b, c The top

three principal components

(PCs) in PCA analysis of the

variation of the present 615

barley samples. Blank,

shadowed and crossed symbols

indicate barley samples with

winter, spring and unknown

seasonal growth habit,

respectively

238 Theor Appl Genet (2012) 124:233–246

123



distributions indicated a very strong skew towards signifi-

cance for almost every trait (ESM, Fig. S4a, b). Although

we expected some of the significant associations to be true,

an excessive number of significant detections obfuscate the

genuine association signals from the true causal genes.

Statistical approaches for reducing confounding

Six different structure correction methods were applied in

an attempt to separate the genuine associations from

background noise in the genome-wide mapping using all

615 barley samples. The number of significant markers

surpassing Bonferroni genome-wide P value threshold

4.8 9 10-5 from each of these methods was listed in

Supplementary Material (ESM, Table S3), from which we

observed, as expected, a remarkable drop in the number of

significant associations from the six correction methods

compared to the naive SMA method. For most of the BLUP

and DUS traits, the SWR and SA methods had a compa-

rable number of significant predictions, followed in

descending order by MLM (K), MLM (P ? K), and lastly

GC. EIGENSTRAT presented different conservativeness

between DUS and BLUP traits; it is a bit more liberal than

MLM (K) in DUS traits but as conservative as GC in BLUP

traits.

Following a similar approach used by Potokina et al.

(2008) to separate cis- from trans- expression quantitative

trait loci (eQTL), we divided the barley genome into seg-

ments of 2 cM length (hereafter referred to as bins), and

represented the significance of each segment by the P value

of the most significant marker within it. In doing so, the

barley genome was split into 303 chromosome bins. Since

the barley genome displays extensive LD blocks, this

effectively reduced the redundancy of significant signals

from linked loci within a short chromosome region, espe-

cially for the naive SMA method (ESM, Table S3). A

comparison of shared significant chromosome bins among

seven analytical methods was summarized as mutual pre-

dictabilities and given in Table 1. Here, mutual predict-

ability of method j to method i is calculated as the

percentage of significant predictions from method i that

were recovered by method j. For example, in DUS traits,

SMA predicted 43.1% of those significant markers detected

from SWR, while the mutual predictability of SWR to

SMA is 4.3%. In general, a method with a larger number of

predictions had higher mutual predictability than a method

with fewer predictions, leading SMA (the most liberal

method) to have the highest mutual predictability and GC

(the most conservative method) to have the lowest mutual

predictability. SWR and SA had more predictions and

hence higher mutual predictabilities than EIGENSTRAT,

MLM (K), MLM (P ? K) and GC. However, SWR and SA

showed poor mutual predictability with each other (e.g., in

DUS traits, SWR recovered a proportion of 21.2% of sig-

nificant chromosome bins called by SA, while SA recov-

ered 12.6% of significant chromosome bins called by

SWR), which diminished the credibility of their added

predictions in comparison to methods with fewer predic-

tions. EIGENSTRAT had higher mutual predictabilities in

DUS than in BLUP traits, which is consistent with the fact

that EIGENSTRAT was more liberal in DUS than in BLUP

traits. For the two MLM models, the MLM (K) model had

better mutual predictability in BLUP traits while the two

were comparable in DUS traits.

Since the six structure correction methods presented

poor agreement on significant predictions, we evaluated

their control of type I error and statistical power by fol-

lowing a similar process to Yu et al. (2006), in which the

type I error was assessed through comparing observed and

expected cumulative P value distributions, while the

power was assessed through a QTN simulation study as

described above. Figure 2a, b shows the cumulative dis-

tributions of observed P values in genome scans from six

different methods in two barley DUS traits, seasonal

growth habit and ear row number. Under the null

hypothesis that random markers are not in LD with the

genetic loci controlling the trait, approaches that have

appropriate control of type I errors are expected to show a

uniform distribution of P values (a diagonal line in these

plots). Generally, two mixed model analyses, MLM

(P ? K) and MLM (K), showed good approximation to

the expected P value distributions in the two traits.

EIGENSTRAT gave liberal results in both traits and GC

and SA gave conservative results for seasonal growth

habit, whereas results from SWR were liberal for seasonal

growth habit but slightly conservative for ear row number.

The statistical power simulation was conducted by adding

a genetic effect to each of 100 randomly selected markers,

one at a time, and then testing, in each simulation, whe-

ther the QTN marker could be detected by different

models under empirical Bonferroni P value threshold

(4.8 9 10-5). The proportion of QTN detected across all

random markers was used as the measurement of the

control of type II error for each model. Figure 2c, d

present the results of statistical power simulation in barley

seasonal growth habit and ear row number traits. The

average statistical power was consistently higher for MLM

(K) than for MLM (P ? K), SA, EIGENSTRAT and GC.

For seasonal growth habit, the SWR had a slightly higher

power than the MLM (K), but for ear row number, the

opposite was true. It is noted that all six-structure cor-

rection methods had higher powers in barley seasonal

growth habit than in barley ear row number at any given

variance proportion, which could be attributed to the fact

that seasonal growth habit had equal numbers of samples

in two different trait categories. Further results of
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cumulative P value distributions as well as statistical

power for all 10 BLUP traits were given in Supplementary

Material (ESM, Fig S4). Without exception, the MLM

(K) method outperformed its rivals in terms of both con-

trolling false positives and maintaining statistical power

for all BLUP traits.

Table 1 Comparison of shared significant predictions among seven analytical methods

Methods # Mutual predictability (%)

SMA SWR SA EIGENSTRAT MLM (P ? K) MLM (K) GC

BLUP

SMA 2,347 100.0 13.8 6.4 0.3 0.8 1.4 0.8

SWR 327 99.1 100.0 21.7 1.5 4.9 9.5 5.5

SA 171 87.7 41.5 100.0 2.3 10.5 17.5 8.2

EIGENSTRAT 6 100.0 83.3 66.7 100.0 50.0 50.0 0.0

MLM (P ? K) 19 94.7 84.2 94.7 15.8 100.0 89.5 36.8

MLM (K) 34 97.1 91.2 88.2 8.8 50.0 100.0 38.2

GC 18 100.0 100.0 77.8 0.0 38.9 72.2 100.0

DUS

SMA 2,522 100.0 4.3 4.4 4.8 1.7 2.0 0.3

SWR 253 43.1 100.0 12.6 11.9 8.7 9.1 1.2

SA 151 74.2 21.2 100.0 46.4 20.5 22.5 2.6

EIGENSTRAT 180 67.8 16.7 38.9 100.0 18.9 20.0 2.8

MLM (P ? K) 43 97.7 51.2 72.1 79.1 100.0 97.7 14.0

MLM (K) 51 100.0 45.1 66.7 70.6 82.4 100.0 11.8

GC 7 100.0 42.9 57.1 71.4 85.7 85.7 100.0

#, the total number of significant chromosome bins of 2 cM length pooled from all of the BLUP or DUS traits. Mutual predictability is calculated

as the percentage (%) of significant predictions from the method in row i (i = 1st,…,7th row) that were also predicted from the method in column

j (j = 1st,…,7th column). For example, in DUS traits, SMA predicted 43.1% of those significant markers detected from SWR, while conversely,

the predictability of SWR to SMA is 4.3%

Fig. 2 Model comparison with

barley seasonal growth habit

and ear row number traits. a, b
Cumulative distribution of the

P values in the genome-wide

association scan in 615 barley

samples. c, d Average statistical

power to detect a QTN based on

Bonferroni correction threshold

(0.05/100 = 5 9 10-4). The

power is averaged across all 100

simulated QTN for each given

variance proportion
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Mapping results

As the MLM (K) method consistently achieved good control

of false positives while yielding the highest power among

six structure correction methods, we concentrated on the

significant predictions from this method in the following

text. The MLM (K) method detected significant associations

(exceeding Bonferroni genome-wide P value threshold

4.8 9 10-5) for 9 out of 10 BLUP and 16 out of 32 DUS

traits (Fig. 3a–d). The complete list of significant marker-

trait associations, as well as peak markers, marker names,

R2
LR (a likelihood-ratio based R2-like statistic), and putative

rice (Oryza sativa) homologue loci were provided in Table 2

for BLUP traits and Supplementary Material (ESM, Table

S4) for DUS traits. In the present paper, marker names were

designated in the form of Xn-nn.nn (where n is a digit), in

which the digit after letter X indicates chromosome number

while the digits after the hyphen indicate map position.

A number m of additional markers at the same chromosomal

position are appended ‘‘.i’’, where i = 1,…, m (e.g. X2-96.

82.1 is the second marker at 96.82 cM on chromosome 2).

The R2
LR statistic was estimated following a likelihood-

ratio based formula suggested by Sun et al. (2010),

R2
LR ¼ 1� exp½2ðL0 � LMÞ=n�, where LM and L0 are

respectively the maximum log-likelihood of the mixed

models with or without incorporating a SNP of interest, and

n is the number of individuals. While the R2
LR statistic, like

the coefficient of determination (R2) in linear fixed effect

model, serves as a measurement of how well different model

agrees with the data, it also provides an intuitive indication

of the genetic effect of the SNP of interest; the changes in

R2
LR values resulted from fitting with different SNPs suggest

the relative importance of these SNPs in explaining the

phenotypic variation. We also experimented another R2-like

statistic used in some literatures (e.g. Atwell et al 2010),

R2

b̂
¼ b̂2P

i ðxi � �xÞ2=
P

i ðyi � �yÞ2, where b̂ is the estimate

of SNP fixed effect derived from mixed model analysis.

Comparison showed that these two R2-like statistics pro-

duced very similar estimates with a median correlation

coefficient of 0.904 although in majority of the cases the R2

b̂

statistic tended to provide higher estimates than the likeli-

hood ratio based statistic (data not shown). The putative rice

homologue loci were derived through BLASTX sequence

alignments with SNP marker source sequences against the

version 6 rice genome sequence as in Close et al. (2009).

For DUS traits, we replicated most of the previously

reported association signals, with the exception of signifi-

cance on barley chromosome 3 for traits seasonal growth

habit and ear row number reported in Cockram et al.

(2010). This discrepancy was probably due to use of dif-

ferent models to account for population structure in the

mixed model analyses (K only model here, Q?K model in

Cockram et al. 2010 where Q is a fractional subpopulation

membership matrix estimated from STRUCTURE).

Among the association signals detected for barley seasonal

growth habit, we noted that significant marker X1-96.92.1

(P value \ 1.0 9 10-220) had a R2
LR value of 40.9%. An

analysis of colinearity with rice genome indicated that this

marker mapped to the barley short-day photoperiod locus

PPD-H2, one major QTL for seasonal growth habit

(Cockram et al. 2010). Detailed examination of allele fre-

quencies revealed that different alleles at this marker were

almost fixed within winter (0.988) and spring (0.005)

samples; similarly, the significant marker X4-26.19.4 was

almost fixed for different alleles between the two-row

(0.998) and six-row (0.071) barley samples, with R2
LR value

of 45.9%.

Several BLUP traits showed significant associations at

markers also detected for the two barley diversity charac-

teristics, ear row number and seasonal growth habit

(Fig. 3b–d; Table 2). For example, marker X4-26.19.4,

which was highly significantly associated with variation of

ear row number, was detected for two grain weight traits

TKW and SpecW. In addition, several markers at or near

96.92 cM on chromosome 1 were highly significantly

associated with variation of seasonal growth habit, and also

detected for four BLUP traits (GrainN, MaltN, SolN and

GE4ml). Common association predictions among these

traits may be coincidental or represent pleiotropic effects of

underlying genetic factors. However, traits MaltN and

GE4ml presented high levels of phenotypic correlations

with seasonal growth habit (Pearson correlation coeffi-

cients 0.97–0.98), likely explaining the common

predictions.

Some BLUP traits were closely connected to each other

and hence phenotypic similarities and common predictions

were observed as expected. For example, two-grain weight

related traits, TKW and SpecW, had a Pearson correlation

coefficient of 0.427 and shared a common signal at marker

X4-26.19.4 (Fig. 3d; Table 2). GrainN, MaltN and SolN

measured the percentage of nitrogen in dry grain, dry

malted grain and malt extract, respectively. While GrainN

and MaltN showed a high degree of phenotypic similarities

(Pearson correlation coefficient is 0.888), SolN showed a

strong negative correlation with GrainN and MaltN

(Pearson correlation coefficients is -0.647 and -0.824,

respectively). Association analyses revealed a common

association at 93.95–96.92 cM on chromosome 1 shared

among the three traits, which was detected for barley

seasonal growth habit. There are also several unique

association signals for each trait, such as marker X5-2.81

for GrainN, X5-63.31 for MaltN and X1-54.73.1 for SolN

(Fig. 3d; Table 2).
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Three BLUP traits, GE4ml, Dorm4ml and Dorm8ml,

measured grain germinations (seedling development) one

month after watering in 4 ml water (GE4ml), or 72 h after

watering in 4 ml (Dorm4ml) and 8 ml (Dorm8ml) of water,

respectively. GE4ml had negative correlations with the

latter two germination traits (Pearson correlation coeffi-

cients -0.562 and -0.483, respectively). As stated above,

GE4ml presented a very strong correlation with seasonal

growth habit and hence had identical association markers.

In contrast, the latter two germination traits presented

positive correlation (Pearson correlation coefficient 0.667)

and their association markers were different from those of

GE4ml. Dorm4ml was associated with three markers at

61.53 cM on chromosome 1 and with a region at

68.35–80.61 cM on chromosome 5, while Dorm8ml gave

associations at 75.4–80.61 cM on chromosome 5 (Fig. 3d;

Table 2). We also performed a joint analysis of treating

Dorm4ml and Dorm8ml as a single trait but incorporating

water treatment as a fixed effect in the MLM (K) model. In

the joint analysis, only the region at 68.35–80.61 cM on

chromosome 5 was predicted significant, while markers at

61.53 cM on chromosome 1 did not exceed genome-wide

threshold (P value 3.3 9 10-4). One marker at 61.53 cM

on chromosome 1 is mapped to barley gene Uni-

Ref90_Q02400, which encodes a late embryogenesis

abundant (LEA) protein associated with desiccation toler-

ance of seeds (Goyal et al. 2005). For the region on

chromosome 5, BLASTX sequence alignments revealed

that a marker at 69.90 cM (BOPA2 marker 12_30080)

mapped to Rice homologue LOC_Os09g26620 (E score

2.0 9 10-51), a putative auxin-repressed gene. This marker

locus is also mapped to Arabidopsis homologue gene

AT1G56220.1 (E score 2.0 9 10-16), which belongs to a

dormancy/auxin associated gene family. The fact that the

growth (germination) of seeds in dormant state commences

with the uptake of water under suitable condition (Bewley

1997) suggests we have successfully identified two barley

germination controlling loci.

Viscosity of wort is a cytolytic character mainly related

to the breakdown of b-glucan, the main structure material

Fig. 3 Significant associations

detected from the MLM

(K) method for (a–c) DUS and

d BLUP traits under Bonferroni

genome-wide P value threshold

4.8 9 10-5. The most

significant SNPs within 2 cM

chromosome bins are labelled

above each figure. SNP name is

designated in a form of Xn-

nn.nn, in which the digit n after

letter X indicates chromosome

while the digits after the

hyphen indicate map position

(see main text for detail). Any

–Log10(P value) above 40 is

truncated to 40. Chromosomes 3

and 7 with no significant signals

are omitted
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in barley endosperm cell walls (Schmalenbach and Pillen

2009). Here, we identified two regions on chromosome 1

(49.34–50.0 and 100.69 cM) significantly associated with

viscosity and consistent with strong quantitative trait locus

(QTL) effects on chromosome 1 at 39–70 cM detected by

Schmalenbach and Pillen (2009).

Discussion

This paper presents a GWAS of agronomic and morpho-

logic traits in a collection of 615 barley cultivars. Compared

to our previous association analysis (Cockram et al. 2010),

the present study recruited additional samples, reported

associations with 10 additional agronomic traits, and con-

ducted a comprehensive survey of association test methods.

The present analysis revealed that more than half of the

DUS traits and all BLUP traits had shown divergent phe-

notypic distributions between winter and spring samples

(ESM, Fig. S2). We also found shared common associations

between a number of agronomic traits and two barley

diversity traits, seasonal growth habit and ear row number

(Table 2). All these suggest that barley diversification had a

profound impact on variations in barley morphological and

agronomic traits, of which the latter are undoubtedly key

issues for cultivated barley. In other words, a number of

traits had undergone strong selection along with diversifi-

cation of seasonal growth habit in barley cultivars, com-

plicating the association mapping in the present structured

barley samples. Although we did not explicitly model the

selection effect in the present study, effective correction for

population structure should have simultaneously accounted

for the confounding from selection which accompanied the

diversification of barley samples.

Table 2 Significant marker-trait associations exceeding Bonferroni threshold (P value 4.8 9 10-5) in the genome scan of BLUP traits

No. Trait Chromosome (interval, cM) Peak marker name P value R2
LR(%) Putative rice homologue

Presenta BOPAb

2 TKW 4H (26.19)c X4-26.19.4 11_20606 1.1 9 10-6 5.6 LOC_Os03g50040.1

3 SpecW 1H (100.69) X1-100.69 11_10357 2.4 9 10-5 3.6 LOC_Os07g10256.1

4H (26.19)c X4-26.19.4 11_20606 1.0 9 10-10 7.8 LOC_Os03g50040.1

4 GrainN 1H (93.95-96.92)d X1-96.92.1 11_10396 1.6 9 10-7 5.9 LOC_Os05g44760.1

4H (123.29) X4-123.29 11_20013 1.1 9 10-5 4.5 LOC_Os10g25060.1

5H (2.81) X5-2.81 11_20553 4.1 9 10-7 6.6 LOC_Os12g44310.2

5 MaltN 1H (92.8-96.92)d X1-96.92.1 11_10396 7.3 9 10-47 35.9 LOC_Os05g44760.1

4H (117.6-123.29)c,d X4-117.60.2 11_21210 1.4 9 10-7 7.8 LOC_Os03g01750.5

5H (63.31) X5-63.31 11_11281 1.6 9 10-5 5.5 LOC_Os09g23350.1

5H (122.38)d X5-122.38 11_10094 9.3 9 10-7 6.4 LOC_Os09g38030.1

5H (151.36)d X5-151.36.3 11_20100 1.7 9 10-6 6.5 LOC_Os03g57220.2

6 SolN 1H (54.73) X1-54.73.1 11_21217 4.4 9 10-5 5.0 LOC_Os10g42780.1

1H (93.95-96.92)d X1-96.92.1 11_10396 5.2 9 10-6 5.8 LOC_Os05g44760.1

7 Viscosity 1H (49.34-50.0) X1-50.00.1 11_10438 3.0 9 10-11 11.7 LOC_Os07g10420.1

1H (100.69) X1-100.69 11_10357 4.2 9 10-6 6.3 LOC_Os07g10256.1

8 GE4 ml 1H (92.8-96.92)d X1-96.92.1 11_10396 1.7 9 10-83 40.8 LOC_Os05g44760.1

4H (111.68)d X4-111.68 11_11299 8.7 9 10-7 6.4 LOC_Os03g02750.1

4H (117.6)c,d X4-117.60.2 11_21210 5.1 9 10-14 15.1 LOC_Os03g01750.5

5H (122.38)d X5-122.38 11_10094 5.6 9 10-10 10.5 LOC_Os09g38030.1

5H (151.36)d X5-151.36.3 11_20100 5.2 9 10-8 8.5 LOC_Os03g57220.2

9 Dorm4 ml 1H (61.53) X1-61.53 11_11049 3.6 9 10-5 5.3 LOC_Os05g28210.1

5H (68.35-80.61) X5-75.40 11_21001 1.6 9 10-14 16.0 LOC_Os09g24980.1

10 Dorm8 ml 5H (75.4-80.61) X5-75.40 11_21001 8.5 9 10-7 7.2 LOC_Os09g24980.1

R2
LR, a likelihood ratio based R2-like statistics. Putative rice homologue for each peak marker is derived by sequence alignment as indicated in

Close et al. (2009). Trait number is the same as in Supplementary Table S2a
a Marker name is designated as Xn-nn.nn, in which the first digit n after letter X indicates chromosome and digits after the hyphen indicate map

position. A number m of additional markers at the same chromosomal position are appended ‘‘.i’’, where i = 1,…,m
b Original marker name designated in Close et al (2009)
c Significant association also detected for barley ear row number
d Significant association also detected for barley seasonal growth habit
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Significant associations were detected for 9 out of 10

BLUP and 16 out of 32 DUS traits. Notably, we found

novel associations at two chromosome regions for barley

seed germination, 61.53 cM on chromosome 1 and

68.35–80.61 cM on chromosome 5. Although the full

barley genome sequence is currently unavailable, infor-

mation from gene annotation and homologous sequence

alignment for marker sequences in the two regions suggests

two possible candidate genes for barley germination, a late

embryogenesis abundant (LEA) protein gene and a putative

gene homologous to Rice and Arabidopsis dormancy/auxin

associated gene. While further genetic study is required to

confirm the discovery, the present finding highlights the

feasibility of high resolution mapping with GWAS in

barley samples. As the markers in the present barley

genotyping platform (BOPA) were entirely developed from

transcribed gene SNPs (Close et al. 2009), efficient inter-

species homology sequence comparison, particularly

through gene synteny, between barley and other grass

genomes including Rice and Arabidopsis thaliana

(Dubcovsky et al. 2001; Bennetzen and Ma 2003), provides

a powerful tool for identifying and refining QTL in the

un-sequenced barley genome.

Factors including geographic localization, breeding

patterns and even human intervention (e.g., selective

breeding based on economic/agronomically significant

traits during crop domestication) may lead to complications

such as strong population structure and familial relatedness

within plant samples assembled in association mapping

studies (Atwell et al. 2010). In the present barley samples,

strong population structure is demonstrated primarily due

to division by seasonal growth habit and by ear row

number, both of which have close connection with breed-

ing activities of cultivated barley. In GWAS of human

complex diseases, population structure has been considered

an important cause of spurious associations and an expla-

nation of failure to replicate significant predictions, making

statistical methods accounting for population structure

essential to validate standard association tests (Balding

2006). This paper presents an evaluation of six association

test methods which are popular in correcting for population

structure, including genomic control (GC) (Devlin and

Roeder 1999), stepwise regression (SWR) (Setakis et al.

2006), structured association (SA) (Pritchard et al.

2000a, b), EIGENSTRAT (Price et al. 2006), and two

mixed linear model (MLM) analyses (Yu et al. 2006).

While a rich literature has reported comparisons of statis-

tical methods for population structure correction, most

studies concentrated on case and control sampling designs

(Astle and Balding 2009; Price et al. 2010; Wu et al. 2010).

Zhao et al. (2007) compared some of the methods con-

sidered here in a sample of Arabidopsis thaliana inbred

lines, though their study is severely under-powered due to

limited sample size (95 accessions). The present study

exploits a much larger sample of barley cultivars collected

from a wide range of germplasm resources and hence

delivers more reliable statistical inference. In addition, this

paper explored a larger number of complex traits of dif-

ferent types, including both continuous (BLUP) and cate-

gorical (DUS) traits, to achieve a more comprehensive

comparison of available methodologies.

Before correcting for population structure, it is critical to

detect and infer the hidden structure in a sample. Perhaps

the most commonly accepted statistical method to detect

population structure is a model-based cluster approach,

STRUCTURE (Pritchard et al. 2000a, b), which uses multi-

locus genotype data to infer the subpopulation number

K and creates a subpopulation membership matrix Q to

represent the samples. However, with the present structured

barley collection, the STRUCTURE method failed to infer

a reliable parameter K despite using different panels of

genotypes with varying number of markers selected

(Fig. 1a). This failure is expected because STRUCTURE

attempts to account for population structure by allocating

population groupings in such a way that Hardy–Weinberg

Equilibrium (HWE) is met within subpopulations, whereas

the assumption of HWE is actually invalid given the nature

of extensive inbreeding in barley samples. Indeed, hetero-

zygous genotypes were rare (0.8%) and thus removed in

the present analysis, rendering this method entirely

impractical.

Dimension reduction techniques such as PCA do not

require a model assumption and hence can robustly predict

the hidden structure by extracting principal components

from a covariance matrix. Although PCA is computation-

ally fast and visually appealing in representing broad dif-

ferences across samples in a dataset, it could be difficult in

practice to make biological interpretations from principal

components (PCs) as population structure surrogates, and

hence further statistical assessment like clustering with

extracted PCs would be essential. We compared the cluster

result from PCA with that from another multidimensional

scaling (MDS) method, the principal coordinate (PCO)

analysis of pairwise IBS kinship estimates, which has been

widely utilized in GWAS to predict the hidden population

structure (Purcell et al. 2007; Simon-Sanchez et al. 2009).

K-means clustering using the top three axes extracted from

PCA and PCO methods showed similar partition patterns

when setting cluster number k = 2 but different partition

patterns when setting k = 3 (ESM, Fig. S5). A Bayesian

model selection with x-means cluster algorithm (Pelleg and

Moore 2000) indicated that the best cluster model from

PCO axes had cluster number k = 3 (BIC = -70.5), dif-

ferent from the cluster result from PCA axes, from which

the best cluster model had cluster number k = 2 (BIC =

-160.1). As the latter had a smaller BIC value, we
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preferred the PCA based cluster membership to create the

P matrix in the present association analysis.

Association analyses with the six above mentioned

structure correction methods predicted highly varying

numbers of significant markers in the strongly structured

barley samples, suggesting caution should be taken to

interpret the associations predicted from different methods.

Through evaluating empirical P value distributions and a

power simulation study, we demonstrated that two MLM

approaches, especially the MLM (K) method, outper-

formed their rivals for controlling the rate of false positives

while maintaining statistical power. The poor performance

of other methods probably results from failure to correct

the confounding caused by relatedness (genetic co-ances-

try) presented in the barley samples, which was captured

through a kinship matrix in the mixed model analyses. For

example, a model selection according to BIC indicated the

best cluster with top principal components to have cluster

number k = 2, which was too simplistic given the number

of combinations of seasonal growth habit and ear number

characteristics. Note that the MLM (P ? K) method had

similar performance in controlling false positives but

showed a decreased statistical power when compared to the

MLM (K) method, which is probably because using the

K matrix alone is sufficient in capturing the complicating

factors in the present barley data, while a combination of

P and K matrices might lead to over-correction.

It should be stressed that DUS traits in the present study

were either binary or categorical characters and hence a

generalized linear mixed model (GLMM) is more appro-

priate than the MLM based analysis. However, GLMM

method with correlated variance components is computa-

tionally inefficient with the currently available algorithms

and it has been suggested that a standard linear regression

framework is useful in binary phenotype analysis such as

with a case and control design (Kang et al. 2010). MLM has

been utilized in GWAS of categorical traits, for example,

Atwell et al. (2010) used MLM to correct for population

structure in a GWAS of both continuous and binary or cat-

egorical traits in Arabidopsis thaliana inbred lines. An

intensive comparison of various methods in the present study

demonstrates that the MLM method is the most promising for

analyzing either continuous and or categorical traits for

GWAS of plant populations with extensive structure.
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